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Purpose
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Demonstrate two challenge applications 
on the Reconfigurable Data Path 
Processor.

Highlight key RDPP Features
Reconfigurability
Data path parallelism
Dynamic data path selection
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Overview
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Background on the Reconfigurable Data Path 
Processor

Focal Plane Array Sensor Readout Correction

Fourier Transform Hyperspectral Imager Data 
Conversion

Results & Conclusions
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What is the RDPP?

Suite of support software
• Application development, compiler, simulator, run-time.
• Integrated with existing software platforms.

An Embedded data processor VLSI chip for 
spacecraft
• Targeted to rad-tolerant, 0.25µ CMOS process.
• Implements a reconfigurable, synchronous data pipeline.
• Run-time reconfigurable.
• Serves as co-processor to a host CPU.
• Off-loads data intensive, streaming tasks from host.
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Low-power, radiation-tolerant alternative to Field 
Programmable Gate Arrays for reconfigurable 
spacecraft data processing.
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Reconfigurable Computing
 

IAµE

Reconfigurable (Adaptive) Computing: Processors 
that rewire themselves “on the fly” to optimize their 
architectures for the task at hand. 

The RDPP is one of the very few 
processors designed specifically for 
reconfigurable (adapative) computing.

“The flexibility of software with the performance of 
dedicated hardware.”

-- Dr. José Muñoz, DARPA Adaptive Computing Program
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Reconfigurable in the News
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“We’re coming upon a sea change in the world of 
semiconductors. There are compelling advantages of 
reconfigurable chips in terms of performance and 
power consumption.”

-- Nick Trendennick, Microprocessor Pioneer

Computing’s Big Shift: Flexibility in the Chips
New York Times, June 16, 2003
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RDPP Features
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Incrementally Reconfigurable
Can address and configure individual elements
Supports partitioning of computational problem

Large problem spread over multiple configurations

Scalable
Tile multiple RDPPs to form a parallel computing 
fabric. Example: 2D image filter

Size No. RDPPs Throughput
3x3 1 RDPP 60 MSamples/sec
5x5 2 RDPPs 60 MSamples/sec
7x7 4 RDPPs 60 MSample/sec… … …
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RDPP Features (cont.)
 

IAµE

Intrinsically Radiation Tolerant
Fabricated in rad-tolerant CMOS technology
No three-module redundancy required
No configuration memory scrubbing 

Power- and Space-efficient
A fraction of the overhead of FPGAs

FPGA: < 1% area utilization for logic
RDPP: > 80% area utilization for logic

High Throughput on Streaming Tasks
Massive data path parallelism 
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RDPP Data Path Elements
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Processing Element Components

Institute of Advanced Microelectronics
University of New Mexico
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Delay Elements
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RDPP Pipeline Execution

IOM1PE4
τ=2

PE0
τ=2

PE3
τ=3

PE2
τ=2

PE1
τ=4

FirePE0FireIOM0

FireIOM1

IOM0

FirePE1 FirePE2

FirePE3

FirePE3

Input

Output

Configuration: set up a pipeline. 
1. Configure elements and interconnects.
2. Load execution program. Synchronous Pipeline

•Blocking read
•Non-blocking write
•PEs and IO modules 
are dataflow actors
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Execute program until completed, or halted by internal 
or external events.

Execution: run a pipeline
1. Initialize
2. Loop
3. Terminate

τ=processing delay
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Focal Plane Array Sensor 
Readout Correction

 

IAµE



14

FPA Readout Errors

Solid State Focal Plane Imaging Array
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Nonuniformity error
1. Offset (dark current)
2. Gain

Bad Pixels
1. Hot pixels
2. Dead pixels
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FPA Readout Correction
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Phase 2: Correction
Read an image and correct each pixel

1. Multiply by 1/gain
2. Subtract offset
3. Replace bad pixels with a spatial average of neighbors

The amount of error is different for each pixel.
Each pixel must be calibrated separately.

Phase 1: Calibration
Acquire calibration data for each pixel

1. Offset
2. Gain error
3. Detect bad pixels
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Hardware Configuration

FIFO

RDPP

input {xm,n}

output {ym,n}

SRAMSRAM

IOM1FPA

IOM0

IOM3 IOM4

DOM

line buffer

offset gain
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Not shown:
1. RDPP-generated control signals 

for FPA and memory
2. Memory address generation 

logic

Host
Micro-
controller

Host I/F
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Phase 1: Calibration Data
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Dark Current Offset Error
1. Close aperture
2. Capture image, store in RAM

Gain Error
1. Present known illumination
2. Capture image, store in RAM
3. Find “expected” value: image mean, compensated for 

offset.
4. Compute gain error from measured & expected values

Tag Bad Pixels
Pixels that don’t change in first two steps are “dead”
Use high-order bit of offset value to tag “dead” pixels 
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Reciprocal Gain Error

)1()1()0(

)1()1()0(

−

−

⋅⋅⋅⋅
⋅⋅⋅⋅

== m

m

xxxd
xxxg

d
ga

K

K

)()( 2 ii dx −=
)2( )()()1( iii ddd −⋅=+

 

IAµE

RDPP Has no hardware divider
Pre-compute reciprocal gain errors & store in memory
Store reciprocal in memory

Division Algorithm: Recurrence
g=gain error
a=reciprocal (1/g)
d=denominator

Set 

{
Find x(i) such that numerator converges to 1

dd =)0(

Easily done in a pipeline and/or tight loop in the RDPP
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Phase 2: Correction
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Dynamic Data Switching
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Nonuniformity correction

Bad Pixel Replacement

Image 
Data ? New

Pixel

RDPP Does not have conditional branching
Instead, use conditional data path switching
Every PE can be a switching element
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Correction Pipeline
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FireDOM

FireIOM3
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Output
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Bad pixel 
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function
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9 Processing Elements Required
Latency = 6 instruction cycles
Throughput = 1 pixel/cycle

Raw Pixels

Gain factor

Offset
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RDPP Simulation Results
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Original Corrupted

Corrected
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Fourier Transform Hyperspectral 
Imager Data Conversion
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FTHSI System
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Vertical columns on imaging array contain the Fourier 
Transform of the spectral intensity.

We must 
1. clean up the signal (appodize)
2. take the magnitude inverse Fourier transform.
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Kestrel FTHSI
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Flown on Air Force MightySat II.1 Satellite
• Launched July 19, 2000
• AFRL Space Vehicles Directorate  proof-of-concept 
“lab bench”

• Built by Kestrel 
Corporation.

• 470-1050 nm spectral 
range

• One picture every 3 days
• On-board data 

conversion experiment 
did not function.

• On the ground: 15 
minutes to convert an 
image
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Kestrel “HyperCam” Data
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FTHSI Data Flow
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High Pass Filter12
FTHSI
Data
Stream

Raw interferograms
128 points/column

128 pt
Hamming
Window

|IFFT| Spectral
Intensity

Appodization requires 1 RDPP + 1 memory.
FFT computed with 1 to 8 RDPP chips.

24

12
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FTHSI Hardware Configuration
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address

RDPPinput output

IOP2

FTHSI IOP0

IOP1 IOP4

DOM

SRAM
Hamming

SRAM
Data
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FFT Algorithms Compared
 

IAµE

Cooley-Tukey
Optimized for single-multiplier machine
Minimizes number of multiply operations
Requires complex data shuffling
Multiple passes through the data

Goertzel
Requires more multiplies
Fourier coefficents computed “in place”
Not data shuffling
Easily parallelized

RDPP is a multiplier-rich, parallel data path 
environment, well-suited to the Goertzel algorithm.
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Compute One FFT Coefficient
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128 iterations of 
recursive filter loop

Subtract last two 
samples
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)1( −nvk

)2( −nvk

Coefficients computed in place
Identical except for )/2cos(2 Nkπ factor
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Two PEs Per DFT Value
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Bank of Goertzel Filters

G0(z)

G1(z)

G2(z)

GN-1(z)

X0

X1

X2

XN-1

Input
sequence

Discrete Fourier 
Transform
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Only one read through the data required.
Can directly compute magnitude only, if desired.

x0x1x2xN-1

X0X1X2XN-1

Dynamic output 
bus assembles 
final sequence

Input stream 
goes to all 
blocks
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Performance
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One-Chip Solution
One RDPP chip can compute 8 DFT coefficients
For 128 points, compute in 8-coefficient “chunks”
8 passes through the data
Must re-load 8 coefficient registers per pass

Computation Time
Target instruction cycle rate: 60 MHz 
128 samples × 2.133 µsec/sample × 8 = 2.18 msec

Configuration Time (Worst Case)
Reload 8 24-bit data registers, 8 times
27 clock cycles/register
27 cycles × 8 registers × 8 × 2.133 µsec/cycle = 3.69 msec

Total: 5.87 msec/conversion or 170 conversions/sec
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Estimated Performance
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Computation
128 samples × 2.133 msec/sample = 0.273 msec/conversion
3,660 conversions/sec
7.15 sec to convert an image of 

512 pixels
128 spectral bands, 

Multi-RDPP Solution
8 RDPP chips for FFT + 1 RDPP for appodization
Compute FFT coefficients in parallel
Only one configuration

Compare to Air Force MightySat FTHSI Experiments
~126 times faster than ground-based conversion with workstation.



35

Conclusions

Implemented both challenge problems 
in RDPPSim simulator
Both yield correct results
Validates the RDPP architecture for these applications
Validates RDPP development software

RDPP Features Demonstrated
Reconfigurability
Highly parallel data path processing
Dynamic data path switching
Partition large problem with incremental reconfiguration
Scalability by tiling RDPP chips
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